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The bound state of few-body systems in light nuclei is studied as a three-body 
problem. The three-body problem is solved following the different approaches 
of the Faddeev formalism as well as the unitary pole approximation. Separable 
approximations are introduced to reduce the three-body problem to a set of 
coupled integral equations. Numerical calculations are carried out for the 
resulting integral equations and the separable expansion. In the present work, 
we calculate the ground-state binding energy of the bound three-nucleon system 
3H. The main interest of the present work is to investigate the sensitivity of the 
three-body binding energy to different effects in the problem. For this reason, 
we study the depend, race of the three-body binding energy of different forms of 
local and separable two-body potentials, on the effective range of the two-body 
potentials, and on the percent of the D state in the deuteron wave function. 
Also, we test the sensitivity of the three-body binding energy to the considered 
number of terms from the separable expansion. 

1. I N T R O D U C T I O N  

The th ree -body  p r o b l e m  has  been  p roved  a power fu l  tool  in s tudy ing  
the s ta t ic  proper t ies  of  l ight nuclei .  F a d d e e v  (1960) successful ly o b t a i n e d  
an  exact  so lu t ion  for  the t h r ee -body  p r o b l e m  lead ing  to a we l l -behaved  set 
of  t h ree -body  equa t ions  involv ing  the t w o - b o d y  T mat r ix  ra ther  than  the 
potent ia l .  The  T ma t r ix  in this  a p p r o a c h  p lays  a centra l  role. In  o the r  
words,  the t w o - b o d y  T ma t r ix  in  the  th ree -body  F a d d e e v  equa t ions  p lays  
the  pa r t  of a po ten t i a l  in the t w o - b o d y  L i p p m a n n - S c h w i n g e r  equa t ion .  
Us ing  separab le  potent ia l s ,  the  F a d d e e v  equa t ions  reduce  to coup led  
in tegra l  equat ions  in one  con t inuous  var iable .  W h e n  using local  po ten t ia l s ,  
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the Faddeev equations are reduced to equations in two continuous varia- 
bles. Different separable approximations and separable expansions have 
been suggested by different authors (Mitra, 1962; Amado, 1963; Lovelace, 
1964; Kowalski, 1965; Noyes, 1965; Fuda, 1969; Kharchenko and Petrov, 
1969) for the T matrix. The Faddeev equations were generalized to be 
applicable for the multiparticle scattering problem (Weinberg, 1964; Sugar 
and Blankenbecler, 1964; Rosenberg, 1965) and for the many-cluster 
problem (Osman, 1977) by constructing N-body integral equations with 
square integrable kernels. Also, Brady et al. (1969) introduced a unitary 
pole approximation, using the two-body binding energy and wave function 
in determining the form factor for the unitary pole approximation separa- 
ble T matrix. 

In the present work, we consider the case of the three-nucleon system 
3H. This nucleus is studied as a three-body problem. We solve the 3H 
nucleus problem following two different approaches. The first approach is 
the Faddeev formalism, using the separable approximation (Brayshaw, 
1968, 1969; Ball et al., 1968; Beam, 1969; Chen and Ishihara, 1969; Chen 
et al., 1969). The second approach is the unitary pole approximation. We 
use both approaches here as a matter of comparison (Kharchenko et al., 
1968; Phillips, 1968; Kok et al., 1968; Levinger, 1969). Direct numerical 
calculations have been carried out for the resulting integral equations for 
the three-body binding energy of 3H. For the nucleon-nucleon interac- 
tions we use both local potentials and nonlocal separable potentials. The 
two-nucleon local potentials used are taken to have square well, exponen- 
tial, Yukawa, and also Hulthrn forms. The separable nucleon-nucleon 
interactions used are taken to have potential functions of the Yamaguchi, 
Gaussian, Tabakin, Mongan, and Reid forms. The different parameters of 
all local and separable nucleon-nucleon potentials are determined in such 
a way that they fit the same two-body phase shifts. 

The aim of the work is to investigate different effects in the three-body 
calculations. We study the difference obtained in the three-nucleon 3H 
binding energy by using local or separable potentials fitting the same 
two-body phase shifts. We also test the effect of changing the singlet 
effective range on the binding energy. We estimated the dependence of the 
three-nucleon 3H binding energy on the percent D state of the deuteron 
wave function. To see the convergence of the separable expansion, 
we investigate the effect and contribution of the different partial wave 
expansion terms on the binding energy. Naturally, since in the present 
calculations we use the Faddeev formalism as well as the unitary pole 
approximation, we obtain the difference between these approaches by 
extracting the binding energy. Then we calculate the triton 3H binding 
energy using singl~t two-nucleon potentials with a Yamaguchi form factor 
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of a varying parameter defining the shape of the two-nucleon interaction 
with an estimate of the resulting change in the binding energy. 

The investigation of all these effects on the three-nucleon 3H binding 
energy is studied in the present work. From all the results we can estimate 
the sensitivity of the three-body binding energy to changes in the different 
factors considered here. 

In Section 2, we introduce the different formulas of the approxima- 
tions considered. Numerical calculations and results are given in Section 3. 
Discussion and conclusions are presented in Section 4. 

2. FORMULAS OF THE DIFFERENT APPROXIMATIONS 

In the present work, the three-body problem is solved following two 
different approaches. The first is by following the Faddeev formalism. The 
three-body Faddeev equations are converted into an infinite set of coupled 
integral equations. This infinite set of coupled integral equations is reduced 
to a finite and well-behaved set of coupled integral equations by using 
separable two-body potentials. The three particles in the three-body system 
are denoted by the symbols i, j ,  k in a cyclic permutation. The three-body 
scattering operator from the Faddeev equations can be written in the form 

3 3 

T(z)=  E TO)(z) + E 
i=1 i,j~l 

(2.1) 

where T(i)(z) is the two-body scattering operator of particles j and k. 
'I'o.(z ) is the operator describing the transition of the system from an initial 
scattering state of particles i and k to a final scattering state of particles j 
and k. This operator satisfies the equation 

% ( z )  = ( , , j -  1)ao(Z) + 
3 

~a (~ik-- 1)Go(Z)T(k)(z)x~kj(Z), ( 2 . 2 )  
k = l  

where Go(z ) is the free three-body propagator. The T matrices can be 
written as 

(p;, q'j [ T(O(z)lp,., q~ ) =8(q;-q~)(p;lt(O(z-qi2)lp~) (2.3) 

where t(i)(z) is the two-body T matrix. Pi is the relative momentum of 
particlesj and k, and tli is the momentum of particle i relative to the center 
of mass of particles j and k. In equation (2.3), if t(i)(z) has a bound-state 
pole at z=  -e; ,  then the three-body T matrix T(i)(z) will have a branch 
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point there, with a cut going from - e i to + oo, which is the right-hand cut. 
The two-body T matrices are written in a separable expansion as 

Ni g(i)(p,)g,(i)(p) 
(P'[ t(')( z -  q~)lO) = X (2.4) 

X=I D(O(z -q~)  

The function g(i)(p) is a vertex form factor referring to a formation of a 
two-body bound state or a resonant state. The denominator function 
D(xi)(z-q~) vanishes when z = - e ; ,  which corresponds to a bound or 
resonant state of the particles j and k with energy - e  r Then, the set of 
three-body coupled integral equations is given by 

1'1 t Z X . . ~ I ' I  ; t Z )  
~x~,(q ,q; )--Wx~,q ,q;  

, , r . l ' l  r t l '1 tt ~'xx'~,q , z)qlx,~( q , q; z)  1 f dq"q"2 q"; 
+~Xx, ~o D ( z - ~ q  "z) 

(2.5) 

where xI,(q', q; z) in equation (2.5) is the three-body T-matrix clement for a 
final state of two particles in a relative l state and the third particle in an l 
state relative to the center of mass of the first two. ep(q,, q; z) is the 
in_homogeneous term which is a symmetrized T matrix with one noninter- 
acting particle. In the present calculations, we restrict ourselves to a finite 
set of values of I as 0 < l < L. The numerical calculations are carried out 
with values of L and N/which are not too large. 

The unitary pole approximation is suggested by Brady et al. (1969). 
They introduced this approximation by first considering a knowledge of 
the two-body binding energy and ground-state wave function. Then, a 
separable potential is constructed with identical binding energy and wave 
function, This separable potential is used to find the off-shell values of the 
two-body T matrix and, consequently, the three-body binding energy. In 
this way, the unitary pole approximation separable potential could be 
written in the form 

(plV~jlq ) = --~t,fn(p )f,( q ) (2.6) 

where the form factor f~(p) and the potential strength 2t, are unknowns 
and can be found by solving the corresponding Schr6dinger equation for 
the given two-body binding energy e and ground-state wave function [q)). 
Then the two-body T matrix is given (Brady et al,, 1969) in a separable 
form, which is used to determine the three-body binding energy. 
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3. NUMERICAL CALCULATIONS AND RESULTS 

The three-body binding energy for the three-nucleon system 3H is 
obtained by numerical solution of the resulting three-body integral equa- 
tions. In the present work, we are interested in investigating two-body 
interaction effects on the three-body binding energy. The difference ob- 
tained in the three-nucleon system aH binding energy by using local 
potentials or separable potentials is studied. The effect on the binding 
energy of changing the singlet effective range is tested. Also, we study the 
dependence of the three-nucleon 3H binding energy on the percent D state 
of the deuteron wave function. We also investigate the contribution of the 
different partial wave expansion terms on the binding energy, to test the 
convergence of the separable expansion. Also, the three-nucleon 3H bind- 
ing energy is calculated using the unitary pole approximation so as to 
compare it with those obtained following the Faddeev formalism. When 
using singlet two-nucleon potentials with a Yamaguchi form factor, we 
calculate the triton 3H binding energy with a form factor of varying 
parameter, which defines the shape of the two-nucleon interaction. 

In the present numerical calculations, the three-body ground-state 
energy for the three-nucleon 3H system is calculated with very high 
accuracy. With the features of the potentials used, in our calculations we 
apply the well-behaved Schmidt-Hilbert (Courant and Hilbert, 1953) 
theory of integral equations. In the numerical calculations of the three-body 
integral equations, a 36-point Gaussian integration is used. The integral 
equation is converted into an eigenvalue equation, maintaining a rapid 
convergence at infinity. These eigenvalues are given as a function of the 
energy z. The three-body bound state energies are those values of the 
energy z for which a matrix eigenvalue takes the value 1. 

Direct numerical calculations for the resulting three-body Faddeev 
integral equations are carried out to calculate the binding energy of the 
three-nucleon 3H system, using local and separable potentials for the 
two-nucleon interactions. The binding energy is calculated also by using 
the unitary pole approximation. The local potentials used are taken to have 
square well, exponential, Yukawa, and also Hulthrn forms. The separable 
interactions are taken to have a potential function of the Yamaguchi, 
Gaussian, Tabakin, Mongan, and Reid forms. The values obtained of the 
binding energy of 3H nucleus are given in Table I. The binding energies 
are also calculated for different values of the singlet effective range r 0, and 
for different values of the percent D state of the deuteron wave function. 
The results obtained are introduced in Table II. The first three terms of the 
separable expansion are calculated separately to estimate the contribution 
of each term to the binding energy, which at the same time is also a test of 
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TABLE I. Binding Energies for 3H Nucleus in (MeV), for Different Potentials, 
r 0 ~2.70 fm and PD ---4% 

Binding energies in (MeV) 

Nucleon-nucleon Three-body Faddeev Unitary pole 
potentials Forms integral equations approximation 

local square well 9.58 9.73 
exponential 10.21 10.39 
Yukawa 10.45 10.59 
Hulth~n 9.95 9.98 

separable Yamaguchi 8.83 9.05 
Gaussian 8.67 8.93 
Tabakin 8.86 8.98 
Mongan 8.51 8.76 
Reid 8.54 8.81 

The experimental value 8.48 

TABLE II. Binding energies for 3H Nucleus in (MeV), for Different 
Values of r 0 (fm) and Po(%), for a Potential of the Yamaguchi Form 

x" ,~ ( fm)  2.25 2.40 2.55 2.70 2.85 /'o 
(%) " ~  
1.0 10.76 lO.31 9.93 9.68 9.26 
2.5 10.28 9.89 9.48 9.27 8.74 
4.0 9.72 9.36 9.01 8.83 8.28 
5.5 9.36 8.84 8.59 8.38 7.86 
7.0 8.83 8.31 8.12 7.85 7.39 

TABLE III. Binding Energies for 3H Nucleus in (MeV), for Indi- 
vidual Different Terms of the Partial Wave Expansion 

Nucleon- 
nucleon 

potential 
Forms Partial wave expansion values l 

0 1 2 

local 

separable 

square well 8.494 0.987 0.099 
exponential 9.022 1.084 0.114 
Yukawa 9.236 1.093 0,121 
Hulth~n 8.840 1.002 0.108 
Yamaguchi 7.762 0.981 0.087 
Gaussian 7.723 0.862 0.085 
Tabakin 7.849 0.923 0.088 
Mongan 7.531 0.895 0,084 
Reid 7.545 0.911 0.084 
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TABLE IV. Binding Energies for 3H Nucleus in 
(MeV), for Different n Values (Different Shapes of 

Potentials), r 0 -2 .70  fm 

Different values of n 

The potential form 1 2 3 

(p2 + a 2 ) - n  8.83 8.41 8.25 

the convergence of the expansion. These results are presented in Table III. 
Also, we carried out calculations for the binding energies of 3H nucleus 
using singlet potentials with form factors given as 

g(p)=(pZ+a2)-" (3.1) 

for different values of n. The parameter n defines the shape of the 
two-nucleon interaction and allows for the finiteness of the range of 
internucleon forces. The case with n = 0 is the zero-range force potential. If 
n = l  in expression (3.1), this is the Yukawa potential; if n= 1 in the 
momentum space, it is the Yamaguchi singlet shape. If n = 2 in expression 
(3.1), it gives the exponential potential and so on. We calculate the binding 
energies for 3H nucleus with the potentialgiven by expression (3.1) for 
different values of n, which means different shapes of the two-nucleon 
interactions (keeping the singlet effective range parameters fixed). The 
results obtained are given in Table IV. 

4. DISCUSSION AND CONCLUSIONS 

In the present calculations we deduced one of the most important 
physical observables of the nuclei, the binding energy. We calculated the 
binding energy of the three-nucleon system 3H using different local and 
separable forms for the nucleon-nucleon interactions. For the local poten- 
tials we use square well, exponential, Yukawa, and Hulth6n potential 
forms. When using separable potentials, we used potential functions of the 
Yamaguchi, Gaussian, Tabakin, Mongan, and Reid forms. In the present 
calculations, we followed two methods. One method is by direct numerical 
calculations of the resulting coupled integral equations from the Faddeev 
formalism using separable expansion, the other is by using the unitary pole 
approximation. Here we calculate the binding energy of the 3H nucleus, 
changing values of different two-nucleon parameters to investigate the 
dependence and sensitivity of the 3H three-body binding energy on differ- 
ent effects. All the results obtained are introduced in Tables I-IV. From 
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these tables we can conclude the following: 
(i) Separable and local potentials are taken to fit the same two-body 

phase shifts. In spite of that, the extracted three-nucleon 3H binding 
energies using local potentials differ by about 1-1.5 MeV from the 
three-nucleon 3H binding energies using separable potentials. The separa- 
ble potentials always give the lower values. 

(ii) The three-nucleon 3H binding energies calculated following the 
Faddeev formalism always differ by about 0.2-0.3 MeV from that calcu- 
lated by the unitary pole approximation using the same two-nucleon 
potentials. This difference on the average is about 2.5%. The Faddeev 
formalism always gives the lower values. 

(if) Each step of changing the singlet effective range r 0 results in 
changing the three-nucleon aH binding energy by about 0.4 MeV on the 
average. This means that a change in the singlet effective range r 0 on the 
average of 5.88% gives a change in the binding energy on the average of 
2.94%. As a function of r 0, the binding energy always decreases by 
increasing the singlet effective range. 

(iv) Each step of changing the percent of the D state in the deuteron 
wave function PD results in changing the three-nucleon 3H binding energy 
by about 0.5 MeV on the average. This means that a change in the percent 
of the D state in the deuteron wave function Po on the average of 75% 
gives a change in the binding energy on the average of 4.94%. As a 
function of PD, the binding energy always decreases by increasing the 
percent of the D state in the deuteron wave function Po. The value of PD is 
always required to be PD t> 0.45% as a requirement (Levinger, 1969) for the 
value of the deuteron quadrupole moment 

(v) In studying the contribution of each term in the partial wave 
expansion, it is found that the first term for 1=0 contributes to the 
three-nucleon 3H binding energy by about 87.90%; the second term with 
l - 1  contributes by ~tbout 11.11%; while the contribution to the three- 
nucleon binding energy from the third term with l= 2 is only of about 
0.99%. 

(vi) For Yamaguchi potentials with form factors given by equation 
(3.1), the three-nucleon binding energy decreases by increasing the param- 
eter n, which changes the shape of the two-body potential, keeping the 
singlet effective range parameters fixed. If n is increased from 1 to 2, the 
binding energy is decreased by about 0.4 MeV, which is about 4.87%. 
Increasing n from 2 to 3, the binding energy decreases further by about 0.2 
MeV, which is a further 1.92% approximately. Increasing n from 1 to 3 
makes the three-nucleon binding energy decrease by about 0.6 MeV, which 
means that it decreases by about 6.79%. 
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